Energiedouce depuis sa création en 2003 a participé à la réalisation de plusieurs centaines de projets d’alimentation d’équipements électriques en site isolé. Nous comptons parmi nos clients professionnels des entreprises reconnues telles que INEO GDF Suez, Eiffage, MTN, BNP Paribas, LVMH, Cegelec, Total, Teréga, etc… Rentrez dans cette rubrique pour découvrir quelques unes de nos réalisations. Lire la suite
Energiedouce depuis sa création en 2003 a participé à la réalisation de plusieurs centaines de projets d’alimentation d’équipements électriques en site isolé. Nous comptons parmi nos clients professionnels des entreprises reconnues telles que INEO GDF Suez, Eiffage, MTN, BNP Paribas, LVMH, Cegelec, Total, Teréga, etc… Rentrez dans cette rubrique pour découvrir quelques unes de nos réalisations. Lire la suite
<< Retour au sommaire de l'espace conseils et FAQ
Les LEDS sont utilisées depuis une quarantaine d'années, principalement pour des applications de signalisation (calculatrice, voyant d'appareil électroménager, etc.). La technologie des LEDs n'a cessé de progresser depuis. De nouvelles applications d'éclairage à LEDs se développent chaque jour, améliorant ainsi les performances en matière de puissance, de consommation d’énergie et de durée de vie des nouveaux équipements d’éclairage.
Flux lumineux Ö (Lumens)
C'est la quantité d'énergie émise par une source sous forme de rayonnement visible dans toutes les directions, par unité de temps.
Angle d'émission á (Degrés)
C'est l'angle de demi-intensité lumineuse de la LED, c'est-à-dire l'angle total (dans les deux directions par rapport à l'axe optique) à l'intérieur duquel l'intensité lumineuse (en Candelas (cd)) est supérieure à la moitié de l'intensité lumineuse maximale.
Efficacité lumineuse (Lumens/Watts)
Elle définit la capacité d'un éclairage à produire un flux important à partir d'un Watt (W) électrique absorbé. Il faut distinguer trois efficacités lumineuses, suivant que l'on tient compte:
Remarques :
Température de couleur (Kelvin)
C'est la couleur apparente émise par une source lumineuse blanche. Elle s'exprime en degrés Kelvin (0°K = -273°C). Les lumières de teintes chaudes tirent sur le jaune-rouge et ont une température de couleur inférieure à 3000°K (2700 à 2900°K pour les lumières "incandescentes"). Les lumières de teintes froides tirent sur le bleu-violet et ont une température de couleur comprise entre 5.000 et 10.000 °K (6.500°K pour des luminaires de teinte "lumière du jour"). Selon la règle de Kruithof, plus la couleur apparente est chaude (plus la température de couleur est faible), plus le niveau d'éclairement (en lux) peut être faible sans nuire à la sensation de bien être.
Indice de Rendu des Couleurs (IRC)
Cet indice compris entre 0 et 100 définit l'aptitude d'une source lumineuse à restituer les différentes couleurs des objets qu'elle éclaire, par rapport à une source de référence. La lumière solaire a un IRC de 100, tandis que des lampes à vapeur de sodium (utilisées dans les tunnels routiers par exemple) ont un IRC de 20. Dans les magasins, les locaux scolaires ou les bureaux, l'IRC devrait toujours être supérieur à 80.
Voici les appréciations que l’on peut tirer d'un IRC:
IRC compris entre 0 et 50 : très mauvais
IRC compris entre 50 et 70 : mauvais
IRC compris entre 70 et 80 : passable
IRC compris entre 80 et 90 : bon
IRC compris entre 90 et 100 : trèsbon
Les 2 familles
Il existe deux grandes familles de LEDs : inorganiques (LED) et organiques (OLED). Notons simplement que les LEDs organiques (OLEDs) sont en développement, et que les premières applications commencent à peine à arriver sur le marché. Alors que les LEDs fournissent des sources ponctuelles similaires aux lampes à incandescence, les OLEDs pourraient remplacer les sources plus étendues comme les tubes fluorescents. Pour le moment la mauvaise efficacité lumineuse des OLEDs, ainsi que leurs courtes durées de vies font qu'elles ne sont pas utilisées pour l'éclairage. Par contre, les industriels comptent les utiliser à terme pour les applications d'affichage et de signalisation. Nous nous intéresserons dans ce qui suit uniquement au LEDs (inorganiques).
Les LEDs inorganiques classiques sont des jonctions P-N (diodes) dopées afin d'émettre un rayonnement visible ou ultraviolet quand un courant les traverse dans le sens passant. Le rayonnement émis par une LED classique (rouge, verte) est presque monochromatique (raie spectrale). Le rayonnement des LEDs blanches est dichromatique ou polychromatique suivant la technique utilisée (voir plus bas).
Les différents formats
Les formes des LEDs peuvent être très différentes suivant les modèles. Les LEDs peuvent être: rondes 5mm (la plus classique), rondes 3mm, carrées 7,6 mm, miniatures (pour CMS), ou encore montées sur un circuit spécial (voir la LED Luxéon de Lumileds)
L'encapsulation
Dans tous les types de LEDs la puce semi¬conductrice lumineuse (ou 'dé') est complètement encapsulée dans un matériau plastique transparent, généralement une résine époxy, qui joue le rôle de lentille et détermine l'angle d'émission lumineuse. Ce format rend les LEDs très résistantes aux chocs, par contraste avec une ampoule de verre.
L'alimentation électrique
Les LEDs fonctionnent toujours en courant continu basse tension (de 0,5 à 3 Volts par LED selon la couleur). Elles sont souvent montées en séries pour augmenter le niveau de tension. Elles sont généralement alimentées en continu 9V, 12V ou 24V, à partir de batteries, de piles ou de photopiles. En continu, le circuit d'alimentation est très simple: il suffit d'ajouter une résistance correctement dimensionnée entre la source de tension continue et la LED.
Exemple : on peut brancher une LED classique rouge (1,2 volts) en série avec une résistance de 180 ohms, le tout alimenté en 5V. Le courant atteint alors 21 mA [(5-1,2) / 180]. Remarquons que les trois quarts de l'énergie sont perdues dans la résistance (80 mW contre 25 dans la LED).
En alternatif, des convertisseurs (alternatifs/continu) permettent d'alimenter des luminaires à LEDs à partir du 230 V. Cependant ces convertisseurs peuvent avoir un très mauvais rendement (inférieur à 50%), ce qui réduit d'autant l'efficacité lumineuse de l'ensemble. Il est donc important de bien concevoir ces alimentations pour réduire les consommations. Les LEDs classiques absorbaient un courant de l'ordre de 20 mA pour une puissance de 0,025 W en 1,2V. Mais la puissance de certaines LEDs récentes atteint aujourd'hui 5W
La durée de vie
La durée de vie des LEDs est définie comme la durée avant laquelle la LED n’émettra plus que 50% de son flux lumineux initial. Selon les fabricants de LEDs, ces durées de vies sont supérieures à 100.000 heures (plus de 11 ans en continu), parfois même 150.000 heures. C'est 100 fois plus élevé que pour une lampe à incandescence classique. C'est actuellement l'intérêt majeur des LEDs. Les LEDs conventionnelles perdaient 30% de leur efficacité lumineuse après 3.000 heures d'utilisation à cause du jaunissement de l'encapsulation en époxy. Ce problème a été résolu sur les dernières générations de LEDs.
L'efficacité lumineuse
L'efficacité lumineuse des LEDs dépend de la technologie utilisée. Elle varie énormément avec la couleur émise par la LED, ainsi qu'avec le fabriquant. Le tableau ci-dessous donne des ordres de grandeurs, pour les meilleures LEDs (les modèles standards produisent 100 à 1.000 fois moins).
Rouge/orange | Jaune/Ambre | Vert | Bleu | Blanc | |
---|---|---|---|---|---|
Efficacité lumineuse (Lm/W) | 53 | 35 | 25-42 | 5-15 | 15-25 |
LEDs blanches : les prévisions selon l’OIDA (Optoelectronics Industry Development Association)
2002 | 2007 | 2012 | 2020 | |
---|---|---|---|---|
Efficacité lumineuse (Lm/W) | 25 | 75 | 150 | 200 |
Durée de vie (h) | > 20 000 | > 20 000 | > 100 000 | > 100 000 |
Flux par lampe (lm) | 25 | 200 | 1000 | 1500 |
Indice de rendu des couleurs (IRC) | 75 | 80 | >80 | >80 |
Marché pénétré | Incandescence | Fluorescence | Tous |
Comment émettre de la lumière blanche à partir de LEDs ?
Les LEDs classiques n'émettent qu'autour d'une longueur d'onde donnée (raie spectrale), alors que la lumière blanche solaire ou incandescente émet sur toute l'étendue du spectre visible de manière continue et homogène. Différentes méthodes sont utilisées pour créer de la lumière blanche ou pseudo-blanche à partir de LEDs. Notons que ces méthodes sont relativement récentes puisqu'elles s'appuient toutes sur l'émission de LEDs bleues ou UV, qui furent particulièrement complexes à réaliser, et n'ont été commercialisées qu'à partir de 1990.
Méthode 1 - Mélange de LEDs de couleurs
La mise au point récente par Nichia de LEDs bleues, permet de produire de la lumière blanche à partir d'un mélange de LEDs rouges, vertes, et bleues dans un même luminaire, spot, ou 'tableau' à LEDs. La température de couleur obtenue dépendra du nombre relatif de chaque type de LEDs. Cette méthode à deux avantages: l'efficacité lumineuse globale est bonne (de l'ordre de 25 lumens par Watt et plus), et elle permet de faire varier les intensités lumineuses de chaque groupe de LEDs afin d'obtenir la température de couleur désirée. C'est la méthode la plus efficace pour le moment. Un IRC de 80 peut être atteint en utilisant 3 types de LEDs soigneusement sélectionnées, mais les meilleures performances sont atteintes avec 4 ou 5 groupes de LEDS de couleurs différentes. Cette méthode sera probablement la plus utilisée à long terme. Mais le mélange homogène des couleurs reste très difficile à réaliser et coûteux.
Méthode 2 - LED bleue et phosphore(s)
Cette méthode utilise le principe de fluorescence. La LED blanche est fabriquée à partir d'une diode émettant dans le bleu (GaN). Une couche luminescente à base de phosphore est déposée au-dessus pour convertir une partie du rayonnement émis en un rayonnement jaune. La lumière visible résultante est donc un mélange de bleu et de jaune, vu comme un pseudo-blanc. Ces LEDs ont une efficacité lumineuse de 15 à 25 lumens par Watt et plus, selon les fabricants (Nichia, CREE). Ce sont les plus répandues sur le marché actuellement. Leur température de couleur est d'environ 4.000°K et leur IRC est de 75, ou plus faible (c'est à dire assez mauvais). Un "halo" gênant est également présent pour ces LEDs: alors que la lumière bleue est directive, la lumière jaune émise est multidirectionnelle.
Méthode 3 - La méthode Schubert
Cette méthode développée par le professeur Fred Schubert de l'université de Boston, permet de créer un pseudo-blanc sans phosphore. Cette LED est appelée PRS-LED, pour Photon Recycling Semi-conductor LED. Le principe est le suivant: au niveau du semi-conducteur, une source primaire est excitée par le courant électrique injecté. Cette région active émet alors un rayonnement visible bleu (InGaN) dont une partie va être absorbée par une région active secondaire (AlInGaP) qui "recycle" ces photons émis. Ce recyclage permet la réémission de lumière de longueur d'onde plus élevée (jaune ou rouge), qui, associée à la lumière résiduelle et complémentaire émise par la source primaire, donnera une source-dichromatique pseudo-blanche. Cette méthode n'est pas encore utilisée industriellement.
Méthode 4 – Les LEDS à UV et trois phosphores ou plus
Cette méthode utilise le rayonnement d'une LED à UV qui est absorbé par différents phosphores, qui émettent alors simultanément des couleurs complémentaires. L'IRC est alors similaire à celui des lampes fluorescentes (bon). Mais le fait que le rayonnement UV ne soit pas visible directement (contrairement à la lumière bleue dans la méthode 2), nécessite que l'émission d'UV soit très efficace, pour concurrencer la méthode 2.
Quelles sont les forces et les faiblesses des LEDs blanches pour l’éclairage ?
Les LEDs sont-elles plus efficaces que les autres sources lumineuses blanches?
D'un point de vue purement technique la réponse est "Non, pas encore … mais cela ne saurait tarder …", comme le montre le tableau ci-dessous.
Incandescent | Halogène | Fluocompacte | Tube fluorescent | Sodium haute pression | LED Blanches | |
---|---|---|---|---|---|---|
Efficacité lumineuse des ampoules seules (lm/W) | 5-15 | 10-26 | 50-70 | 70-120 | 75-150 | 15-80 (en 2008) 150 (en 2012) |
Durée de vie (heures) | 1000 | 4000 | 12000 | 10 000 à 20 000 | 16 000 | 100 000 à 150 000 |
Indice de rendu des couleurs (IRC) | 100 | 100 | 85 | 85 | 65 | 65 (bleue) à 85 (UV) |
Les LEDs permettent-elles actuellement de réaliser des économies d'énergie?
Oui, dans certaines applications, compte tenu des caractéristiques optiques des LEDs (couleurs, directivité, type d'alimentation électrique…), les LEDs peuvent remplacer avantageusement l'éclairage "traditionnel" avec un flux lumineux (en lumens) et une puissance appelée moins importants, pour un service équivalent. Elles sont particulièrement intéressantes pour des applications qui nécessitent un éclairage très directionnel.
Les LEDs sont-elles rentables d'un point de vue économique?
La fiabilité et la durée de vie des LEDs permettent dans les endroits où la maintenance des luminaires pose problème, d'amortir rapidement le surcoût d'achat.
Avantages de la technologie LED
Les trois principaux fabricants de LEDs au monde sont les entreprises NICHIA (Japon), Philips LUMILEDS (Europe/Etats-Unis) et CREE (Etats-Unis). Un autre grand constructeur est AGILENT.
Le marché des luminaires à LEDs n'est pas encore très développé en France. Mais les LEDs peuvent dès à présent être utilisées avec profit pour les applications suivantes de signalisation :
Les feux de circulation
Les LEDS dans cette application sont dans certains cas dix fois plus efficaces que les lampes à incandescence habituellement utilisées, du fait surtout de leur directivité et de leur couleur. La maintenance est également très fortement réduite. De plus les lampes incandescentes utilisées pour ces feux ont un bas rendement.
Exemple d’un feu piéton :
La ville de Grenoble s'est lancée dans l'aventure et a investi 150.000 Euros pour changer tous les feux de circulation en feux à LED. L'investissement a été remboursé en 3 ans et la ville économise 55.000 Euros par an. Le remplacement des lampes à incandescence par des LED représente un triple intérêt. Celles-ci permettent un gain de consommation important, un gain de maintenance grâce à leur longévité très supérieure, et offrent également une plus grande sécurité. En effet, la lumière colorée des LED évite la pose de caches de couleur sur les boîtiers, améliorant ainsi nettement la visibilité.
Le balisage urbain, la sécurité routière, et l’automobile.
De nombreux distributeurs proposent des systèmes de balisage et de signalisation à LEDs. Un système de balisage d'une autoroute en Suède a été mis en place à partir de LEDs. Les balises sont alimentées par un système photovoltaïque. Les constructeurs commencent également à utiliser les LEDs pour les feux de freinage (le troisième) les clignotants et les tableaux de bord.
Les BAES et BAEH
L'utilisation de LEDs pour la veilleuse et l'éclairage de secours de BAES (Bloc Autonome d’Eclairage de Secours) ou de BAEH permet de réduire considérablement la maintenance sur ces appareils. Les LEDs sont aujourd'hui couramment utilisées pour la fonction veilleuse, mais l'usage de LEDs pour l'éclairage de sécurité est encore rare.
Les lampes torches et frontales
On trouve de nombreuses torches, lampes frontales et phares à LED blanches ou bleues sur le marché. Les LEDs sont particulièrement appréciées pour ces applications, du fait de leur résistance aux chocs et de leur très longue longévité. Elles sont généralement alimentées avec des piles 1,5 V et ne contiennent que quelques LEDs (de 3 à 10 pour les torches, mais jusqu’à 60 pour un phare de plongée). On peut en trouver à partir de 15 Euros. L’utilisation de LEDs permet aussi de concevoir des torches magnétiques sans pile, qui ne soient pas trop encombrantes: en secouant la lampe pendant 30 secondes, on recharge à l’aide d’un aimant glissant à l’intérieur d’une bobine, un condensateur capable d’alimenter une torche pendant près d’une heure. Ce système est construit pour durer des années.
Les luminaires en hauteur
Dans les usines, supermarchés, amphithéâtres, à l'extérieur… les sources lumineuses sont souvent placées à plus de trois mètres de hauteur ce qui rend la maintenance plus difficile et coûteuse. La durée de vie très importante des LEDs permet alors de réduire incroyablement les opérations de maintenance. Le surcoût des LEDs peut alors être amorti rapidement. On ne trouve malheureusement pas encore beaucoup de luminaires pour ce type d’application en France.
L'éclairage dans les pays "en développement"
Deux milliards de personnes n'ont pas accès à la lumière électrique. Les LEDs pourraient à terme remplacer les lampes à kérosène dangereuses et peu efficaces dans les villages qui le désirent. Le professeur Irvine-Halliday a mis au point une lampe à LEDs fonctionnant sur batteries rechargeables à partir d'énergies renouvelables (pico-turbines, photopiles, petites éoliennes). Un village de 60 maisons équipé de ces lampes absorbe une puissance de l'ordre de 100 W. Pourtant l'éclairage est de meilleure qualité que l'éclairage traditionnel (kérosène, bougie, pétrole…), et suffit à éclairer les postes de travail principaux des logements.
Les luminaires « design »
Les premiers luminaires à utiliser la technologie à LED sont fabriqués par de grands designers. Cette technologie permet d’élaborer de nouvelles formes. La qualité de l’éclairage est également appréciée. Artemide, Lucepla, Ingo Maurer ont développé des lampes de bureau ou des plafonniers à partir des LED.
Les éclairages décoratifs
Les LED sont souvent utilisées dans la décoration intérieure : on trouve des spots colorés à LED pour l’éclairage d’objets exposés, des galets, des torches de jardin, des « bandes » de LEDs qui peuvent servir comme nez de marches ou pour baliser les salles obscures, des panneaux en remplacement des néons colorés, des lampes dichroïques… Ces applications ne nécessitent pas de fortes puissances, et leur surcoût est justifié par leur aspect décoratif.
Les lampes à incandescence de Thomas Edison pourraient bien disparaître si les LEDs tiennent toutes leurs promesses.
Au cours des dernières années, les adaptations géométriques des puces électroniques ont permis de progresser sur le plan de l’émission de lumière. On dispose ainsi de plus de lumière, pour une consommation en électricité identique. On peut obtenir encore plus de clarté en agrandissant la puce. Il n'y a pas de raisons connues pour que l'efficacité lumineuse des LEDs blanches ne puisse atteindre un 200 lumens ou plus par watt.
Selon l’OIDA (Optoelectronics Industry Development Association) à Washington DC, les LEDs blanches pourraient permettre de diviser par deux la quantité d'électricité utilisée pour l'éclairage aux États-Unis d'ici 2020.
Nous sommes ouverts au public du Lundi au Vendredi de 9h à 12h30 et de 14h à 17h30. Parking gratuit. Magasin & Espace de vente - Retrait marchandises IMMEDIAT.
Plusieurs variations de Lorem Ipsum peuvent être trouvées ici ou là, mais la majeure partie d'entre elles a été altérée par.